metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[diaquabis[(4-chlorophenylsulfinyl)acetato- κ O]cobalt(II)]- μ -4,4'bipyridine- $\kappa^2 N:N'$]

Yan-Jun Hou, Ying-Hui Yu, Zhi-Zhong Sun, Bai-Yan Li and Guang-Feng Hou*

College of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China Correspondence e-mail: hgf1000@163.com

Received 24 April 2007; accepted 24 April 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.040; wR factor = 0.081; data-to-parameter ratio = 17.2.

In the title coordination polymer, $[Co(C_8H_6ClO_3S)_2-(C_{10}H_8N_2)(H_2O)_2]_n$, the Co^{II} atom exists in an octahedral coordination environment formed by two carboxylate O atoms from two (4-chlorophenylsulfinyl)acetate ligands, two N atoms from bipyridine ligands and two water molecules. The Co^{II} atom lies on a twofold rotation axis. Bridging by the bipyridine ligand leads to a linear chain structure, and intermolecular O–H···O hydrogen bonds link the chains into a three-dimensional network.

Related literature

For related literature, see: Ghosh *et al.* (2005); Nobles & Thompson (1965).

Experimental

Crystal data

 $[Co(C_8H_6ClO_3S)_2(C_{10}H_8N_2)-(H_2O)_2]$ $M_r = 686.42$ Orthorhombic, *Fdd*2 a = 20.129 (4) Å b = 25.466 (5) Å c = 11.413 (2) Å

Data collection

Rigaku R-AXIS RAPID diffractometer Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{\rm min} = 0.782, T_{\rm max} = 0.839$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.040$
$wR(F^2) = 0.081$
S = 1.04
3237 reflections
188 parameters
1 restraint

V = 5850 (2) Å³ Z = 8 Mo K\alpha radiation μ = 0.96 mm⁻¹ T = 293 (2) K 0.27 × 0.25 × 0.19 mm

14081 measured reflections 3237 independent reflections 2728 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.064$

H-atom parameters constrained $\Delta \rho_{max} = 0.35 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.33 \text{ e} \text{ Å}^{-3}$ Absolute structure: Flack (1983), with 1480 Friedel pairs Flack parameter: -0.021 (18)

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{l} O4-H12\cdots O1^{i}\\ O4-H12\cdots S2^{i}\\ O4-H11\cdots O2^{ii} \end{array}$	0.85	1.87	2.692 (3)	164
	0.85	2.98	3.806 (2)	165
	0.85	1.84	2.651 (3)	159

Symmetry codes: (i) $x + \frac{1}{4}, -y + \frac{7}{4}, z - \frac{1}{4}$; (ii) -x, -y + 2, z.

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXL97*.

The authors thank Heilongjiang University for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2260).

References

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

- Ghosh, S. K., Ribas, J. & Bharadwaj, P. K. (2005). Cryst. Growth Des. 5, 623–629.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Nobles, W. L. & Thompson, B. B. (1965). J. Pharm. Sci. 54, 709-713.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

supplementary materials

Acta Cryst. (2007). E63, m1560 [doi:10.1107/S160053680702065X]

catena-Poly[[diaquabis[(4-chlorophenylsulfinyl)acetato- κO]cobalt(II)]- μ -4,4'-bipyridine- $\kappa^2 N:N'$]

Y.-J. Hou, Y.-H. Yu, Z.-Z. Sun, B.-Y. Li and G.-F. Hou

Comment

4,4'-Bipyridine and organic aromatic carboxylic acid ligands are often used to bridge metal atoms and these compounds can demonstrate various network topologies (Ghosh *et al.*, 2005). The title compound, (I), is a cobalt(II) 4-chlorophenyl-sulfinylacetate that is bridged by 4,4'-bipyridine into a linear chain. The Co^{II} atom shows an all-*trans* octahedral coordination. The chains are connected into a three-dimensional network *via* intermolecular O—H…O hydrogen bonds (Table 1, Fig. 2).

Experimental

(4-Chlorophenylsulfanyl)acetic acid was prepared by nucleophilic reaction of chloroacetic acid and 4-chlorothiophenol under basic conditions. It was then oxidized using 30% aqueous hydrogen peroxide in acetic anhydride solution to produce 4-chlorophenylsulfinyl acetic acid (Nobles & Thompson, 1965). Cobalt nitrate hexahydrate (0.582 g, 2 mmol), 4,4'-bipyridine (0.312 g, 2 mmol) and 4-chlorophenylsulfinyl acetic acid (0.437 g, 2 mmol) were dissolved in water and the pH was adjusted to 6 with 0.01 *M* sodium hydroxide. Pink crystals separated from the filtered solution after several days.

Refinement

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic C) or C—H = 0.97 Å (methylene C), and with $U_{iso}(H) = 1.2U_{eq}(C)$. Water H atoms were initially located in a difference Fourier map but they were treated as riding on their parent atoms with O—H = 0.85 Å and with $U_{iso}(H) = 1.5U_{eq}(O)$.

Figures

Fig. 1. Part of the polymeric structure of the title complex, with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are represented as spheres of arbitrary radii. [Symmetry codes: (I) -x, -y + 2, z; (II) x, y,z - 1; (III) -x, -y + 2, z - 1; (IV) x, y, z + 1].

Fig. 2. A partial packing plot of (I). Dashed lines indicate the hydrogen-bonding interactions. H atoms not involved in hydrogen bonds have been omitted.

$catena - Poly[[[diaquabis[(4-chlorophenylsulfinyl)acetato-\ \kappa O]cobalt(II)] - \mu - 4, 4' - bipyridine - \kappa^2 N: N']$

Crystal data	
[Co(C ₈ H ₆ ClO ₃ S) ₂ (C ₁₀ H ₈ N ₂)(H ₂ O) ₂]	$F_{000} = 2808$
$M_r = 686.42$	$D_{\rm x} = 1.559 {\rm ~Mg~m}^{-3}$
Orthorhombic, <i>Fdd</i> 2	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: F 2 -2d	Cell parameters from 10618 reflections
a = 20.129 (4) Å	$\theta = 6.3 - 54.9^{\circ}$
b = 25.466 (5) Å	$\mu = 0.96 \text{ mm}^{-1}$
c = 11.413 (2) Å	T = 293 (2) K
$V = 5850 (2) \text{ Å}^3$	Block, brown
Z = 8	$0.27 \times 0.25 \times 0.19 \text{ mm}$

Data collection

3237 independent reflections
2728 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.064$
$\theta_{\text{max}} = 27.5^{\circ}$
$\theta_{\min} = 3.2^{\circ}$
$h = -26 \rightarrow 26$
$k = -32 \rightarrow 32$
$l = -14 \rightarrow 14$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.040$	$w = 1/[\sigma^2(F_o^2) + (0.0254P)^2 + 12.1874P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.081$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 1.04	$\Delta \rho_{max} = 0.35 \text{ e } \text{\AA}^{-3}$
3237 reflections	$\Delta \rho_{min} = -0.33 \text{ e} \text{ Å}^{-3}$

188 parameters	Extinction correction: none
1 restraint	Absolute structure: Flack (1983), with how many Friedel pairs?
Primary atom site location: structure-invariant direct methods	Flack parameter: -0.021 (18)
Secondary atom site location: difference Fourier map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.02753 (18)	0.72535 (12)	0.2402 (3)	0.0328 (8)
C2	0.06450 (19)	0.70613 (13)	0.1485 (3)	0.0388 (8)
H1	0.0606	0.7214	0.0747	0.047*
C3	0.1071 (2)	0.66474 (13)	0.1647 (4)	0.0479 (10)
H2	0.1332	0.6523	0.1035	0.058*
C4	0.1099 (2)	0.64239 (14)	0.2734 (4)	0.0496 (10)
C5	0.0737 (2)	0.66005 (17)	0.3665 (4)	0.0541 (11)
Н3	0.0768	0.6440	0.4395	0.065*
C6	0.0322 (2)	0.70276 (15)	0.3487 (3)	0.0469 (10)
H4	0.0074	0.7161	0.4107	0.056*
C7	0.02917 (17)	0.82876 (11)	0.1972 (3)	0.0367 (8)
Н5	0.0573	0.8307	0.2661	0.044*
Н6	0.0572	0.8214	0.1300	0.044*
C8	-0.00637 (19)	0.88119 (11)	0.1794 (3)	0.0329 (8)
C9	0.0204 (2)	1.04139 (13)	0.4480 (3)	0.0408 (9)
H7	0.0358	1.0706	0.4072	0.049*
C10	0.0198 (2)	1.04325 (15)	0.5685 (4)	0.0463 (10)
H8	0.0329	1.0737	0.6071	0.056*
C11	0.0000	1.0000	0.6319 (4)	0.0331 (13)
C12	0.0000	1.0000	0.7620 (5)	0.0362 (14)
C13	0.0337 (2)	0.96238 (15)	0.8246 (3)	0.0403 (9)
Н9	0.0567	0.9359	0.7858	0.048*
C14	0.03323 (19)	0.96414 (13)	0.9455 (3)	0.0391 (9)
H10	0.0574	0.9389	0.9863	0.047*
Cl1	0.16178 (8)	0.58814 (6)	0.29368 (16)	0.0944 (5)
N1	0.0000	1.0000	0.3873 (3)	0.0291 (10)
N2	0.0000	1.0000	1.0066 (3)	0.0330 (11)

supplementary materials

01	-0.06217 (15)	0.78760 (10)	0.3313 (3)	0.0570 (8)
O2	-0.06390 (14)	0.88010 (10)	0.1425 (3)	0.0515 (7)
O3	0.02768 (11)	0.92078 (8)	0.2029 (2)	0.0332 (5)
O4	0.10051 (11)	1.02305 (8)	0.19801 (19)	0.0357 (5)
H12	0.1238	1.0058	0.1493	0.054*
H11	0.0992	1.0555	0.1808	0.054*
S2	-0.03025 (5)	0.77720 (3)	0.21482 (9)	0.0379 (2)
Col	0.0000	1.0000	0.19793 (4)	0.02525 (14)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0347 (19)	0.0281 (15)	0.035 (2)	-0.0017 (14)	0.0055 (15)	-0.0014 (15)
C2	0.045 (2)	0.0334 (17)	0.0378 (18)	0.0034 (16)	0.0094 (17)	0.0062 (16)
C3	0.051 (3)	0.0378 (19)	0.055 (2)	0.0070 (17)	0.0152 (19)	-0.0029 (19)
C4	0.043 (2)	0.0368 (19)	0.068 (3)	0.0051 (18)	-0.006 (2)	0.0122 (19)
C5	0.060 (3)	0.060 (3)	0.042 (2)	0.004 (2)	0.001 (2)	0.025 (2)
C6	0.057 (3)	0.048 (2)	0.036 (2)	0.0026 (19)	0.0103 (18)	0.0008 (18)
C7	0.0383 (18)	0.0291 (15)	0.0428 (19)	0.0013 (13)	0.0046 (18)	0.0000 (16)
C8	0.043 (2)	0.0268 (14)	0.028 (2)	-0.0018 (15)	0.0017 (16)	0.0010 (14)
C9	0.065 (3)	0.0351 (18)	0.0219 (18)	-0.0124 (17)	-0.0059 (17)	0.0031 (15)
C10	0.073 (3)	0.036 (2)	0.030 (2)	-0.0120 (19)	-0.0086 (19)	-0.0009 (16)
C11	0.042 (4)	0.045 (3)	0.012 (3)	-0.003 (2)	0.000	0.000
C12	0.051 (4)	0.033 (3)	0.025 (3)	-0.006 (2)	0.000	0.000
C13	0.055 (3)	0.045 (2)	0.0208 (18)	0.0106 (18)	0.0064 (17)	-0.0022 (16)
C14	0.049 (2)	0.0390 (19)	0.029 (2)	0.0093 (16)	0.0014 (18)	0.0023 (16)
Cl1	0.0814 (11)	0.0679 (8)	0.1339 (14)	0.0381 (7)	-0.0058 (9)	0.0272 (9)
N1	0.036 (3)	0.036 (2)	0.015 (2)	0.0017 (17)	0.000	0.000
N2	0.043 (3)	0.037 (2)	0.019 (2)	0.0003 (19)	0.000	0.000
01	0.0551 (19)	0.0439 (15)	0.072 (2)	0.0013 (13)	0.0340 (16)	-0.0001 (15)
O2	0.0508 (18)	0.0356 (13)	0.0683 (18)	0.0025 (12)	-0.0212 (15)	-0.0091 (12)
O3	0.0443 (13)	0.0252 (10)	0.0300 (11)	-0.0013 (9)	-0.0008 (12)	0.0005 (10)
O4	0.0400 (13)	0.0332 (10)	0.0338 (11)	0.0043 (9)	0.0046 (11)	0.0019 (12)
S2	0.0343 (5)	0.0284 (4)	0.0511 (5)	-0.0009 (3)	0.0013 (4)	-0.0024 (4)
Col	0.0340 (3)	0.0249 (3)	0.0169 (2)	0.0013 (3)	0.000	0.000

Geometric parameters (Å, °)

C1—C6	1.369 (5)	С10—Н8	0.9300
C1—C2	1.374 (5)	C11—C10 ⁱ	1.377 (5)
C1—S2	1.783 (3)	C11—C12	1.484 (5)
C2—C3	1.371 (5)	C12—C13	1.375 (4)
C2—H1	0.9300	C12—C13 ⁱ	1.375 (4)
C3—C4	1.366 (6)	C13—C14	1.381 (5)
С3—Н2	0.9300	С13—Н9	0.9300
C4—C5	1.364 (6)	C14—N2	1.330 (4)
C4—Cl1	1.747 (4)	C14—H10	0.9300
C5—C6	1.387 (6)	N1—C9 ⁱ	1.326 (4)

С5—Н3	0.9300	N1—Co1	2.161 (4)
С6—Н4	0.9300	N2—C14 ⁱ	1.330 (4)
С7—С8	1.528 (4)	N2—Co1 ⁱⁱ	2.183 (4)
C7—S2	1.787 (3)	O1—S2	1.500 (3)
С7—Н5	0.9700	O3—Co1	2.094 (2)
С7—Н6	0.9700	O4—Co1	2.107 (2)
C8—O2	1.232 (4)	O4—H12	0.8498
C8—O3	1.248 (4)	O4—H11	0.8502
C9—N1	1.326 (4)	Co1—O3 ⁱ	2.094 (2)
C9—C10	1.376 (6)	Co1—O4 ⁱ	2.107 (2)
С9—Н7	0.9300	Co1—N2 ⁱⁱⁱ	2.183 (4)
C10—C11	1.377 (5)		
C6—C1—C2	120.1 (3)	C13—C12—C11	121.3 (2)
C6—C1—S2	120.2 (3)	C13 ⁱ —C12—C11	121.3 (2)
C2—C1—S2	119.6 (3)	C12—C13—C14	119.6 (4)
C3—C2—C1	120.6 (3)	С12—С13—Н9	120.2
С3—С2—Н1	119.7	С14—С13—Н9	120.2
C1—C2—H1	119.7	N2-C14-C13	123.4 (3)
C4—C3—C2	118.0 (4)	N2—C14—H10	118.3
C4—C3—H2	121.0	C13—C14—H10	118.3
C2—C3—H2	121.0	C9—N1—C9 ⁱ	117.0 (4)
C5—C4—C3	123.2 (4)	C9—N1—Co1	121.5 (2)
C5—C4—Cl1	118.5 (3)	C9 ⁱ —N1—Co1	121.5 (2)
C3—C4—Cl1	118.3 (3)	C14 ⁱ —N2—C14	116.7 (4)
C4—C5—C6	117.8 (4)	C14 ⁱ —N2—Co1 ⁱⁱ	121.6 (2)
С4—С5—Н3	121.1	C14—N2—Co1 ⁱⁱ	121.6 (2)
С6—С5—Н3	121.1	C8—O3—Co1	128.8 (2)
C1—C6—C5	120.2 (4)	Co1—O4—H12	112.6
C1—C6—H4	119.9	Co1—O4—H11	103.9
С5—С6—Н4	119.9	H12—O4—H11	111.7
C8—C7—S2	110.1 (2)	O1—S2—C1	105.45 (17)
C8—C7—H5	109.6	01—S2—C7	104.87 (16)
S2—C7—H5	109.6	C1—S2—C7	97.23 (16)
С8—С7—Н6	109.6	O3 ¹ —Co1—O3	176.87 (13)
S2—C7—H6	109.6	O3 ¹ —Co1—O4 ¹	90.73 (8)
Н5—С7—Н6	108.2	O3—Co1—O4 ⁱ	89.26 (8)
O2—C8—O3	127.4 (3)	O3 ⁱ —Co1—O4	89.26 (8)
O2—C8—C7	117.8 (3)	O3—Co1—O4	90.73 (8)
O3—C8—C7	114.8 (3)	O4 ⁱ —Co1—O4	179.95 (15)
N1—C9—C10	123.2 (3)	O3 ⁱ —Co1—N1	88.43 (6)
N1—C9—H7	118.4	O3—Co1—N1	88.43 (6)
С10—С9—Н7	118.4	O4 ⁱ —Co1—N1	89.98 (6)
C9—C10—C11	120.0 (4)	O4—Co1—N1	89.98 (6)
С9—С10—Н8	120.0	O3 ⁱ —Co1—N2 ⁱⁱⁱ	91.57 (6)
С11—С10—Н8	120.0	O3—Co1—N2 ⁱⁱⁱ	91.57 (6)

supplementary materials

C10-C11-C10 ⁱ	116.6 (5)	O4 ⁱ —Co1—N2 ⁱⁱⁱ		90.02 (6)
C10-C11-C12	121.7 (2)	O4—Co1—N2 ⁱⁱⁱ		90.02 (6)
C10 ⁱ —C11—C12	121.7 (2)	N1—Co1—N2 ⁱⁱⁱ		180.000 (2)
C13—C12—C13 ⁱ	117.3 (5)			
Symmetry codes: (i) $-x$, $-y+2$, z ; (ii)) <i>x</i> , <i>y</i> , <i>z</i> +1; (iii) <i>x</i> , <i>y</i> , <i>z</i> −1			
Hydrogen-bond geometry (Å, °)				
D—H···A	D—I	H H…A	$D \cdots A$	D—H··· A
O4—H12···O1 ^{iv}	0.85	1.87	2.692 (3)	164

2.98

1.84

0.85

3.806 (2)

2.651 (3)

165

159

O4—H11···O2ⁱ 0.85 Symmetry codes: (iv) x+1/4, -y+7/4, z-1/4; (i) -x, -y+2, z.

O4—H12··· $S2^{iv}$

